
Package: tabshiftr (via r-universe)
September 16, 2024

Title Reshape Disorganised Messy Data

Version 0.5.1

Description Helps the user to build and register schema descriptions
of disorganised (messy) tables. Disorganised tables are tables
that are not in a topologically coherent form, where packages
such as 'tidyr' could be used for reshaping. The schema
description documents the arrangement of input tables and is
used to reshape them into a standardised (tidy) output format.

URL https://luckinet.github.io/tabshiftr/,

https://github.com/luckinet/tabshiftr

BugReports https://github.com/luckinet/tabshiftr/issues

Depends R (>= 2.10)

Language en-gb

License GPL-3

Encoding UTF-8

LazyData true

Imports checkmate, rlang, tibble, dplyr, tidyr, magrittr, tidyselect,
testthat, crayon, methods, purrr, stringr, lubridate

RoxygenNote 7.3.2

Suggests knitr, rmarkdown, bookdown, readr

VignetteBuilder knitr

Repository https://luckinet.r-universe.dev

RemoteUrl https://github.com/luckinet/tabshiftr

RemoteRef HEAD

RemoteSha 1a8df412954ac7052a05ab217507a013f11a6eee

1

https://luckinet.github.io/tabshiftr/
https://github.com/luckinet/tabshiftr
https://github.com/luckinet/tabshiftr/issues

2 .eval_find

Contents

.eval_find . 2

.eval_sum . 3

.expect_valid_table . 4

.find . 4

.getColTypes . 6

.reportProblems . 7

.spliceHeader . 7

.sum . 8

.tidyVars . 8

.updateFormat . 9
getClusterVar . 9
getData . 10
getGroupVar . 11
getIDVars . 12
getObsVars . 12
reorganise . 13
schema-class . 14
schema_default . 16
setCluster . 16
setFilter . 18
setFormat . 19
setGroups . 20
setIDVar . 21
setObsVar . 23
show,schema-method . 24
tabs2shift . 25
validateSchema . 25

Index 27

.eval_find Evaluate .find constructs

Description

Evaluate .find constructs

Usage

.eval_find(input = NULL, col = NULL, row = NULL, clusters = NULL)

.eval_sum 3

Arguments

input [data.frame(1)]
table to reorganise.

col [list(2)]
the output of the respective .find construct used to match in columns.

row [list(2)]
the output of the respective .find construct used to match in rows.

clusters [list(7)]
the cluster slot of the schema.

Value

the columns or rows of the evaluated position

.eval_sum Evaluate .sum constructs

Description

Evaluate .sum constructs

Usage

.eval_sum(input = NULL, groups = NULL, data = NULL)

Arguments

input [data.frame(1)]
table to reorganise.

groups [list(3)]
the groups-slot from a schema.

data [integerish(.)]
the cell column or row that should be adapted to groupings.

Value

the position of the evaluated position

4 .find

.expect_valid_table Test for a valid table

Description

This function is a collection of expectations which ensure that the output of reorganise is formally
and contentwise correct. It is used in the tests of this package.

Usage

.expect_valid_table(
x = NULL,
units = 1,
variables = NULL,
groups = FALSE,
flags = FALSE

)

Arguments

x a table to test.

units the number of units in the output table (from 1 to 3)

variables the variables that should be in the output table (either "harvested" or "produc-
tion")

groups whether or not groups are in the test table.

flags whether or not flags are in the test table.

Value

Either an error message of the invalid expectations, or the output of the last successful expectation.

.find Determine row or column on the fly

Description

Find the location of a variable not based on it’s columns/rows, but based on a regular expression or
function

.find 5

Usage

.find(
fun = NULL,
pattern = NULL,
col = NULL,
row = NULL,
invert = FALSE,
relative = FALSE

)

Arguments

fun [character(1)]
function to identify columns or rows in the input table on the fly.

pattern [character(1)]
character string containing a regular expression to identify columns or rows in
the input table on the fly.

col [integerish(1)]
optionally, in case this function should only be applied to certain columns, pro-
vides this here.

row [integerish(1)]
optionally, in case this function should only be applied to certain rows, provides
this here.

invert [logical(1)]
whether or not the identified columns or rows should be inverted, i.e., all other
columns or rows should be selected.

relative [logical(1)]
whether or not the values provided in col or row are relative to the cluster posi-
tion(s) or whether they are absolute positions, i.e, refer to the overall table.

Details

This functions is basically a wild-card for when columns or rows are not known ad-hoc, but have to
be assigned on the fly. This can be very helpful when several tables contain the same variables, but
the arrangement may be slightly different.

Value

the index values where the target was found.

How does this work

The first step in using any schema is validating it via the function validateSchema. This happens
by default in reorganise, but can also be done manually, for example when debugging complicated
schema descriptions.

In case that function encounters a schema that wants to find columns or rows on the fly via .find, it
combines all cells of columns and all cells of rows into one character string and matches the regular

6 .getColTypes

expression or function on those. Columns/rows that have a match are returned as the respective
column/row value.

Examples

use regular expressions to find cell positions
(input <- tabs2shift$clusters_messy)

schema <- setCluster(id = "territories",
left = .find(pattern = "comm*"), top = .find(pattern = "comm*")) %>%

setIDVar(name = "territories", columns = c(1, 1, 4), rows = c(2, 9, 9)) %>%
setIDVar(name = "year", columns = 4, rows = c(3:6), distinct = TRUE) %>%
setIDVar(name = "commodities", columns = c(1, 1, 4)) %>%
setObsVar(name = "harvested", columns = c(2, 2, 5)) %>%
setObsVar(name = "production", columns = c(3, 3, 6))

schema
validateSchema(schema = schema, input = input)

use a function to find rows
(input <- tabs2shift$messy_rows)

schema <-
setFilter(rows = .find(fun = is.numeric, col = 1, invert = TRUE)) %>%
setIDVar(name = "territories", columns = 1) %>%
setIDVar(name = "year", columns = 2) %>%
setIDVar(name = "commodities", columns = 3) %>%
setObsVar(name = "harvested", columns = 5) %>%
setObsVar(name = "production", columns = 6)

reorganise(schema = schema, input = input)

.getColTypes Get the column types of a tibble

Description

Get the column types of a tibble

Usage

.getColTypes(input = NULL, collapse = TRUE)

Arguments

input [data.frame(1)]
table of which to get the column types.

collapse [logical(1)]
whether or not to paste all column types into one string.

.reportProblems 7

.reportProblems Catch and report problems in a schema description

Description

This function checks the current setup of a schema and reports problems that will lead to an error
of reorganise if not fixed.

Usage

.reportProblems(schema = NULL)

Arguments

schema [character(1)]
the schema description to check.

.spliceHeader Splice the header into the table

Description

Splice the header into the table

Usage

.spliceHeader(input, rows = NULL)

Arguments

input [data.frame(1)]
table of which the header should be shifted into the table.

rows [{integeris(1)]
the number of rows to shift into the table.

8 .tidyVars

.sum Summarise groups of rows or columns

Description

Summarise groups of rows or columns

Usage

.sum(..., character = NULL, numeric = NULL)

Arguments

... [integerish(1)]
columns or rows that shall be combined. If there are several items provided,
they will be summarised into one group that is combined according to its type
and the respective function provided in character or numeric.

character [function(1)]
function by which character columns or rows shall be combined.

numeric [function(1)]
function by which numeric columns or rows shall be combined.

Details

By default character values are summarised with the function paste0(na.omit(x), collapse =
"-/-") and numeric values with the function sum(x, na.rm = TRUE). To avoid un-intuitive behav-
ior, it is wisest to explicitly specify how all exceptions, such as NA-values, shall be handled and
thus to provide a new function.

Value

the index values where the target was found.

.tidyVars Match variables

Description

This function matches id and observed variables and reshapes them accordingly

Usage

.tidyVars(ids = NULL, obs = NULL, clust = NULL, grp = NULL)

.updateFormat 9

Arguments

ids list of id variables

obs list of observed variables

clust list of cluster variables

grp list of group variables

Value

a symmetric list of variables (all with the same dimensions)

.updateFormat Update the formating of a table

Description

This function updates the format of a table by applying a schema description to it.

Usage

.updateFormat(input = NULL, schema = NULL)

Arguments

input [character(1)]
table to reorganise.

schema [character(1)]
the schema description of input.

getClusterVar Extract cluster variables

Description

This function extracts the cluster variable from a table by applying a schema description to it.

Usage

getClusterVar(schema = NULL, input = NULL)

Arguments

schema [character(1)]
the (validated) schema description of input.

input [character(1)]
table to reorganise.

10 getData

Value

a list per cluster with values of the cluster variable

Examples

input <- tabs2shift$clusters_nested
schema <- setCluster(id = "sublevel",

group = "territories", member = c(1, 1, 2),
left = 1, top = c(3, 8, 15)) %>%

setIDVar(name = "territories", columns = 1, rows = c(2, 14)) %>%
setIDVar(name = "sublevel", columns = 1, rows = c(3, 8, 15)) %>%
setIDVar(name = "year", columns = 7) %>%
setIDVar(name = "commodities", columns = 2) %>%
setObsVar(name = "harvested", columns = 5) %>%
setObsVar(name = "production", columns = 6)

validateSchema(schema = schema, input = input) %>%
getClusterVar(input = input)

getData Extract summarised data

Description

This function extracts data from a table that are summarised by applying a schema description to it.

Usage

getData(schema = NULL, input = NULL)

Arguments

schema [character(1)]
the (validated) schema description of input.

input [character(1)]
table to reorganise.

Value

a table where columns and rows are summarised

Examples

input <- tabs2shift$clusters_nested
schema <- setCluster(id = "sublevel",

group = "territories", member = c(1, 1, 2),
left = 1, top = c(3, 8, 15)) %>%

setIDVar(name = "territories", columns = 1, rows = c(2, 14)) %>%
setIDVar(name = "sublevel", columns = 1, rows = c(3, 8, 15)) %>%

getGroupVar 11

setIDVar(name = "year", columns = 7) %>%
setIDVar(name = "commodities", columns = 2) %>%
setObsVar(name = "harvested", columns = 5) %>%
setObsVar(name = "production", columns = 6)

validateSchema(schema = schema, input = input) %>%
getData(input = input)

getGroupVar Extract cluster group variable

Description

This function extracts the cluster grouping variable from a table by applying a schema description
to it.

Usage

getGroupVar(schema = NULL, input = NULL)

Arguments

schema [character(1)]
the schema description of input.

input [character(1)]
table to reorganise.

Value

a list per cluster with values of the grouping variable

Examples

input <- tabs2shift$clusters_nested
schema <- setCluster(id = "sublevel",

group = "territories", member = c(1, 1, 2),
left = 1, top = c(3, 8, 15)) %>%

setIDVar(name = "territories", columns = 1, rows = c(2, 14)) %>%
setIDVar(name = "sublevel", columns = 1, rows = c(3, 8, 15)) %>%
setIDVar(name = "year", columns = 7) %>%
setIDVar(name = "commodities", columns = 2) %>%
setObsVar(name = "harvested", columns = 5) %>%
setObsVar(name = "production", columns = 6)

validateSchema(schema = schema, input = input) %>%
getGroupVar(input = input)

12 getObsVars

getIDVars Extract identifying variables

Description

This function extracts the identifying variables from a table by applying a schema description to it.

Usage

getIDVars(schema = NULL, input = NULL)

Arguments

schema [character(1)]
the (validated) schema description of input.

input [character(1)]
table to reorganise.

Value

a list per cluster with values of the identifying variables

Examples

input <- tabs2shift$clusters_nested
schema <- setCluster(id = "sublevel",

group = "territories", member = c(1, 1, 2),
left = 1, top = c(3, 8, 15)) %>%

setIDVar(name = "territories", columns = 1, rows = c(2, 14)) %>%
setIDVar(name = "sublevel", columns = 1, rows = c(3, 8, 15)) %>%
setIDVar(name = "year", columns = 7) %>%
setIDVar(name = "commodities", columns = 2) %>%
setObsVar(name = "harvested", columns = 5) %>%
setObsVar(name = "production", columns = 6)

validateSchema(schema = schema, input = input) %>%
getIDVars(input = input)

getObsVars Extract observed variables

Description

This function extracts the observed variables from a table by applying a schema description to it.

reorganise 13

Usage

getObsVars(schema = NULL, input = NULL)

Arguments

schema [character(1)]
the (validated) schema description of input.

input [character(1)]
table to reorganise.

Value

a list per cluster with values of the observed variables

Examples

input <- tabs2shift$clusters_nested
schema <- setCluster(id = "sublevel",

group = "territories", member = c(1, 1, 2),
left = 1, top = c(3, 8, 15)) %>%

setIDVar(name = "territories", columns = 1, rows = c(2, 14)) %>%
setIDVar(name = "sublevel", columns = 1, rows = c(3, 8, 15)) %>%
setIDVar(name = "year", columns = 7) %>%
setIDVar(name = "commodities", columns = 2) %>%
setObsVar(name = "harvested", columns = 5) %>%
setObsVar(name = "production", columns = 6)

validateSchema(schema = schema, input = input) %>%
getObsVars(input = input)

reorganise Reorganise a table

Description

This function takes a disorganised messy table and rearranges columns and rows into a tidy table
based on a schema description.

Usage

reorganise(input = NULL, schema = NULL)

Arguments

input [data.frame(1)]
table to reorganise.

schema [symbol(1)]
the schema description of input.

14 schema-class

Value

A (tidy) table which is the result of reorganising input based on schema.

Examples

a rather disorganised table with messy clusters and a distinct variable
(input <- tabs2shift$clusters_messy)

put together schema description by ...
... identifying cluster positions
schema <- setCluster(id = "territories", left = c(1, 1, 4), top = c(1, 8, 8))

... specifying the cluster ID as id variable (obligatory)
schema <- schema %>%

setIDVar(name = "territories", columns = c(1, 1, 4), rows = c(2, 9, 9))

... specifying the distinct variable (explicit position)
schema <- schema %>%

setIDVar(name = "year", columns = 4, rows = c(3:6), distinct = TRUE)

... specifying a tidy variable (by giving the column values)
schema <- schema %>%

setIDVar(name = "commodities", columns = c(1, 1, 4))

... identifying the (tidy) observed variables
schema <- schema %>%

setObsVar(name = "harvested", columns = c(2, 2, 5)) %>%
setObsVar(name = "production", columns = c(3, 3, 6))

get the tidy output
reorganise(input, schema)

schema-class The schema class (S4) and its methods

Description

A schema stores the information of where which information is stored in a table of data.

Slots

cluster [list(1)]
description of clusters in the table.

format [list(1)]
description of the table format

variables [named list(.)]
description of identifying and observed variables.

schema-class 15

Setting up schema descriptions

This section outlines the currently recommended strategy for setting up schema descriptions. For
example tables and the respective schemas, see the vignette.

1. Variables: Clarify which are the identifying variables and which are the observed variables.
Make sure not to mistake a listed observed variable as identifying variable.

2. Clusters: Determine whether there are clusters and if so, find the origin (top left cell) of each
cluster and provide the required information in setCluster(top = ..., left = ...). It is
advised to treat a table that contains meta-data in the top rows as cluster, as this is often the
case with implicit variables. All variables need to be specified in each cluster (in case clusters
are all organised in the same arrangement), or relative = TRUE can be used. Data may be
organised into clusters a) whenever a set of variables occurs more than once in the same table,
nested into another variable, or b) when the data are organised into separate spreadsheets or
files according to one of the variables (depending on the context, these issues can also be
solved differently). In both cases the variable responsible for clustering (the cluster ID) can
be either an identifying variable, or a categorical observed variable:

• in case the cluster ID is an identifying variable, provide its name in setCluster(id =
...) and specify it as an identifying variable (setIDVar)

• in case it is a observed variable, provide simply setCluster(..., id = "observed").

3. Meta-data: Provide potentially information about the format (setFormat).

4. Identifying variables: Determine the following:

• is the variable available at all? This is particularly important when the data are split up
into tables that are in spreadsheets or files. Often the variable that splits up the data (and
thus identifies the clusters) is not explicitly available in the table anymore. In such a case,
provide the value in setIDVar(..., value = ...).

• all columns in which the variable values sit.
• in case the variable is in several columns, determine additionally the row in which its

values sit. In this case, the values will look like they are part of a header.
• in case the variable must be split off of another column, provide a regular expression that

results in the target subset via setIDVar(..., split = ...).
• in case the variable is distinct from the main table, provide the explicit (non-relative)

position and set setIDVar(..., distinct = TRUE).

5. Observed variable: Determine the following:

• all columns in which the values of the variable sit.
• the conversion factor.
• in case the variable is not tidy, go through the following cases one after the other:

– in case the variable is nested in a wide identifying variable, determine in addition to
the columns in which the values sit also the rows in which the variable name sits.

– in case the names of the variable are given as a value of an identifying variable,
give the column name as setObsVar(..., key = ...), together with the name of
the respective observed variable (as it appears in the table) in values.

– in case the name of the variable is the ID of clusters, specify setObsVar(..., key =
"cluster", value = ...), where values has the cluster number the variable refers
to.

16 setCluster

schema_default Default template of a schema description

Description

Default template of a schema description

Usage

schema_default

Format

The object of class schema describes at which position in a table which information can be found.
It contains the four slots clusters, format, filter and variables.

The default schema description contains all slots and fields that are required by default and identi-
fying and observed variables are added to it into the variables slot.

setCluster Set where the clusters are

Description

There is hardly any limit to how data can be arranged in a spreadsheet, apart from the apparent
organisation into a lattice of cells. However, it is often the case that data are gathered into topologi-
cally coherent chunks. Those chunks are what is called ’cluster’ in tabshiftr.

Usage

setCluster(
schema = NULL,
id = NULL,
group = NULL,
member = NULL,
left = NULL,
top = NULL,
width = NULL,
height = NULL

)

setCluster 17

Arguments

schema [schema(1)]
In case this information is added to an already existing schema, provide that
schema here (overwrites previous information).

id [character(1)]
When data are clustered, it is typically the case that the data are segregated
according to a categorical variables of interest. In such cases, this variable needs
to be registered as cluster ID.

group [character(1)]
When clusters themselves are clustered, they are typically nested into another
categorical variable, which needs to be registered as group ID.

member [integerish(.)]
For each cluster, specify here to which group it belongs. Clusters are enumerated
from left to right and from top to bottom.

left [integerish(.)]
The horizontal cell value of the top-left cell of each cluster. This can also be a
vector of values in case there are several clusters.

top [integerish(.)]
The vertical cell values of the top-left cell of each cluster. This can also be a
vector of values in case there are several clusters.

width [integerish(.)]
The width of each cluster in cells. This can also be a vector of values in case
there are several clusters.

height [integerish(.)]
The height of each cluster in cells. This can also be a vector of values in case
there are several clusters.

Details

Please also take a look at the currently suggested strategy to set up a schema description.

Value

An object of class schema.

See Also

Other functions to describe table arrangement: setFilter(), setFormat(), setGroups(), setIDVar(),
setObsVar()

Examples

please check the vignette for examples

18 setFilter

setFilter Set filters

Description

This function allows to specify additional rules to filter certain rows

Usage

setFilter(
schema = NULL,
rows = NULL,
columns = NULL,
invert = FALSE,
operator = NULL

)

Arguments

schema [schema(1)]
In case this information is added to an already existing schema, provide that
schema here (overwrites previous information).

rows [integerish(.)]
rows that are mentioned here are kept.

columns [integerish(.)]
columns that are mentioned here are kept.

invert [logical(1)]
whether or not to invert the specified columns or rows.

operator [function(1)]
Logic operators by which the current filter should be combined with the directly
preceeding filter; hence this argument is not used in case no other filter was
defined before it.

Value

An object of class schema.

See Also

Other functions to describe table arrangement: setCluster(), setFormat(), setGroups(), setIDVar(),
setObsVar()

setFormat 19

Examples

(input <- tabs2shift$messy_rows)

select rows where there is 'unit 2' in column 1 or 'year 2' in column 2
schema <-

setFilter(rows = .find(pattern = "unit 2", col = 1)) %>%
setFilter(rows = .find(pattern = "year 2", col = 2), operator = `|`) %>%
setIDVar(name = "territories", columns = 1) %>%
setIDVar(name = "year", columns = 2) %>%
setIDVar(name = "commodities", columns = 3) %>%
setObsVar(name = "harvested", columns = 5) %>%
setObsVar(name = "production", columns = 6)

reorganise(schema = schema, input = input)

setFormat Set the specific format of a table

Description

Any table makes some assumptions about the data, but they are mostly not explicitly recorded in
the commonly available table format. This concerns, for example, the symbol(s) that signal "not
available" values or the symbol that is used as decimal sign.

Usage

setFormat(
schema = NULL,
header = 0,
decimal = NULL,
thousand = NULL,
na_values = NULL,
flags = NULL

)

Arguments

schema [schema(1)]
In case this information is added to an already existing schema, provide that
schema here (overwrites previous information).

header [integerish(1)]
The number of header rows. Optimally, a table is read so that column names are
ignored (for example readr::read_csv(file = ..., col_names = FALSE)). If
relatively well defined tables are processed, where the header is always only one
row, the table can be read in with the default and the header can be spliced into
the table by specifying the number of rows here.

20 setGroups

decimal [character(1)]
The symbols that should be interpreted as decimal separator.

thousand [character(1)]
The symbols that should be interpreted as thousand separator.

na_values [character(.)]
The symbols that should be interpreted as NA.

flags [data.frame(2)]
The typically character based flags that should be shaved off of observed vari-
ables to make them identifiable as numeric values. This must be a data.frame
with two columns with names flag and value.

Details

Please also take a look at the currently suggested strategy to set up a schema description.

Value

An object of class schema.

See Also

Other functions to describe table arrangement: setCluster(), setFilter(), setGroups(), setIDVar(),
setObsVar()

Examples

please check the vignette for examples

setGroups Set Groups

Description

This function allows to set groups for rows, columns or clusters that shall be summarised.

Usage

setGroups(schema = NULL, rows = NULL, columns = NULL)

Arguments

schema [schema(1)]
In case this information is added to an already existing schema, provide that
schema here (overwrites previous information).

rows [list(3)]
the output of .sum indicating the rows and a function according to which those
rows should be summarised.

setIDVar 21

columns [list(3)]
the output of .sum indicating the columns and a function according to which
those columns should be summarised.

Value

An object of class schema.

See Also

Other functions to describe table arrangement: setCluster(), setFilter(), setFormat(), setIDVar(),
setObsVar()

Examples

please check the vignette for examples

setIDVar Set an identifying variable

Description

Identifying variables are those variables that describe the (qualitative) properties that make each
observation (as described by the observed variables) unique.

Usage

setIDVar(
schema = NULL,
name = NULL,
type = "character",
value = NULL,
columns = NULL,
rows = NULL,
split = NULL,
merge = NULL,
distinct = FALSE

)

Arguments

schema [schema(1)]
In case this information is added to an already existing schema, provide that
schema here (overwrites previous information).

name [character(1)]
Name of the new identifying variable.

22 setIDVar

type [character(1)]
data type of the new identifying variable. Possible values are "c/character",
"i/integer", "n/numeric", "l/logical", "D/Date" or "_/skip". For "D/Date",
the value has to follow the form YYYY-MM-DD, where dates that don’t match that
are replaced by NA.

value [character(1)]
In case the variable is an implicit variable (i.e., which is not in the origin table),
specify it here.

columns [integerish(.)]
The column(s) in which the values of the new variable are recorded.

rows [integerish(.)]
In case the variable is in several columns, specify here additionally the row in
which the names are recorded.

split [character(1)]
In case the variable is part of a compound value, this should be a regular expres-
sion that splits the respective value off of that compound value. See extract on
how to set up the regular expression.

merge [character(1)]
In case a variable is made up of several columns, this should be the character
string that would connect the two columns (e.g., an empty space " ").

distinct [logical(1)]
whether or not the variable is distinct from a cluster. This is the case when
the variable is not systematically available for all clusters and thus needs to be
registered separately from clusters.

Details

Please also take a look at the currently suggested strategy to set up a schema description.

Value

An object of class schema.

See Also

Other functions to describe table arrangement: setCluster(), setFilter(), setFormat(), setGroups(),
setObsVar()

Examples

please check the vignette for examples

setObsVar 23

setObsVar Set an observed variable

Description

Observed variables are those variables that contain the (quantitative) observed/measured values of
each unique unit (as described by the identifying variables). There may be several of them and
in a tidy table they’d be recorded as separate columns.

Usage

setObsVar(
schema = NULL,
name = NULL,
type = "numeric",
columns = NULL,
top = NULL,
distinct = FALSE,
factor = 1,
key = NULL,
value = NULL

)

Arguments

schema [schema(1)]
In case this information is added to an already existing schema, provide that
schema here (overwrites previous information).

name [character(1)]
Name of the new observed variable.

type [character(1)]
data type of the new observed variable. Possible values are "c/character",
"i/integer", "n/numeric", "l/logical", "D/date" or "_/skip".

columns [integerish(.)]
The column(s) in which the values of the new variable are recorded.

top [integerish(.)]
In case the variable is nested in a wide identifying variable, specify here addi-
tionally the topmost row in which the variable name sits.

distinct [logical(1)]
Whether or not the variable is distinct from a cluster. This is the case when the
variable is recorded somewhere ’on the side’ and thus not explicitly included in
all clusters.

factor [numeric(1)]
the factor that needs to be multiplied with the values to convert to the target unit,
defaults to 1. For instance, if values are recorded in acres, but shall be recorded
in hectare, the factor would be 0.40468.

24 show,schema-method

key [integerish(1)]
If the variable is recorded (together with other variables) so that the variable
names are listed in one column and the respective values are listed in another
column, give here the number of the column that contains the variable names.
Can alternatively be "cluster", in case observed variables are the cluster ID.

value [character(1)]
If the variable is recorded (together with other variables) so that the variable
names are listed in one column and the respective values are listed in another
column, give here the level in the names column that refer to the values of this
variable.

Details

Please also take a look at the currently suggested strategy to set up a schema description.

Value

An object of class schema.

See Also

Other functions to describe table arrangement: setCluster(), setFilter(), setFormat(), setGroups(),
setIDVar()

Examples

please check the vignette for examples

show,schema-method Print the schema

Description

Print the schema

Usage

S4 method for signature 'schema'
show(object)

Arguments

object [schema]
the schema to print.

tabs2shift 25

tabs2shift List of table types

Description

List of table types

Usage

tabs2shift

Format

The object of class list contains 20 different types of tables that are used throughout the unit-tests
and examples/vignette.

validateSchema Check and update schema descriptions

Description

This function takes a raw schema description and updates values that were only given as wildcard
or implied values. It is automatically called by reorganise, but can also be used in concert with
the getters to debug a schema.

Usage

validateSchema(schema = NULL, input = NULL)

Arguments

schema [symbol(1)]
the schema description.

input [data.frame(1)]
an input for which to check a schema description.

Details

The core idea of a schema description is that it can be written in a very generic way, as long as it
describes sufficiently where in a table what variable can be found. A very generic way can be via
using the function .find to identify the initially unknown cell-locations of a variable on-the-fly, for
example when it is merely known that a variable must be in the table, but not where it is.

validateSchema matches a schema with an input table and inserts the accordingly evaluated posi-
tions (of clusters, filters and variables), adapts some of the meta-data and ensures formal consistency
of the schema.

26 validateSchema

Value

An updated schema description

Examples

build a schema for an already tidy table
(tidyTab <- tabs2shift$tidy)

schema <-
setIDVar(name = "territories", col = 1) %>%
setIDVar(name = "year", col = .find(pattern = "period")) %>%
setIDVar(name = "commodities", col = 3) %>%
setObsVar(name = "harvested", col = 5) %>%
setObsVar(name = "production", col = 6)

before ...
schema

... after
validateSchema(schema = schema, input = tidyTab)

Index

∗ datasets
schema_default, 16
tabs2shift, 25

∗ functions to describe table arrangement
setCluster, 16
setFilter, 18
setFormat, 19
setGroups, 20
setIDVar, 21
setObsVar, 23

.eval_find, 2

.eval_sum, 3

.expect_valid_table, 4

.find, 4, 25

.getColTypes, 6

.reportProblems, 7

.spliceHeader, 7

.sum, 8, 20, 21

.tidyVars, 8

.updateFormat, 9

clusters, 14

extract, 22

format, 14

getClusterVar, 9
getData, 10
getGroupVar, 11
getIDVars, 12
getObsVars, 12

identifying, 14

Logic, 18

observed, 14

reorganise, 4, 5, 13

schema, 17, 18, 20–22, 24

schema (schema-class), 14
schema description, 17, 20, 22, 24
schema-class, 14
schema_default, 16
setCluster, 15, 16, 18, 20–22, 24
setFilter, 17, 18, 20–22, 24
setFormat, 15, 17, 18, 19, 21, 22, 24
setGroups, 17, 18, 20, 20, 22, 24
setIDVar, 15, 17, 18, 20, 21, 21, 24
setObsVar, 15, 17, 18, 20–22, 23
show,schema-method, 24

tabs2shift, 25

validateSchema, 5, 25

27

	.eval_find
	.eval_sum
	.expect_valid_table
	.find
	.getColTypes
	.reportProblems
	.spliceHeader
	.sum
	.tidyVars
	.updateFormat
	getClusterVar
	getData
	getGroupVar
	getIDVars
	getObsVars
	reorganise
	schema-class
	schema_default
	setCluster
	setFilter
	setFormat
	setGroups
	setIDVar
	setObsVar
	show,schema-method
	tabs2shift
	validateSchema
	Index

